2.2.4. Среднее квадратическое отклонение
В чём его смысл? Если мы отклонимся от математического ожидания влево и вправо на среднее квадратическое отклонение:
– то на этом интервале (или вблизи него) будут «сконцентрированы» наиболее вероятные значения случайной величины. Что мы, собственно, и наблюдаем – в полученный интервал попали значения и .
Однако так сложилось, что при анализе рассеяния чаще оперируют понятием дисперсии. Давайте разберёмся, что она означает применительно к играм. Если в случае со стрелками речь идёт о «кучности» попаданий относительно центра мишени, то здесь дисперсия характеризует две вещи:
Во-первых, при увеличении ставок, дисперсия тоже возрастает. Так, например, если мы увеличим в 10 раз, то математическое ожидание увеличится в 10 раз, а дисперсия – в 100 раз (коль скоро, это квадратичная величина). Но, заметьте, что сами-то правила игры не изменились! Изменились лишь ставки, грубо говоря, раньше мы ставили 10 рублей, теперь 100.
Второй, более интересный момент состоит в том, что дисперсия характеризует стиль игры. Мысленно зафиксируем игровые ставки на каком-то определённом уровне, и посмотрим, что здесь к чему:
Игра с низкой дисперсией – это осторожная игра. Игрок склонен выбирать самые надёжные схемы, и в ситуации неопределённости не рискует слишком большими деньгами. Например, система «красное / чёрное» в рулетке (см. Задачу 85).
Игра с высокой дисперсией. Её часто так и называют – дисперсионной игрой. Это авантюрный или агрессивный стиль игры, где игрок выбирает «адреналиновые» схемы. Вспомним хотя бы Мартингейл, где на кону оказываются суммы, на порядок превосходящие «тихую» игру предыдущего пункта.
Многими любимый покер: здесь есть так называемые тайтовые игроки, которые склонны осторожничать и «трястись» над своими игровыми средствами (банкроллом). Неудивительно, что их банкролл не подвергается значительным колебаниям (низкая дисперсия). Наоборот, если у игрока высокая дисперсия, то это агрессор. Он часто рискует, делает крупные ставки и может, как сорвать огромный банк, так и програться в пух и прах.
То же самое происходит на биржах, и так далее – примеров масса.
Причём, во всех случаях не важно – на копейки ли идёт игра или на тысячи долларов. На любом уровне есть свои низко- и высокодисперсионные игроки. Ну а за средний выигрыш, как мы помним, «отвечает» математическое ожидание.
Наверное, вы заметили, что нахождение дисперсии – есть процесс длительный и кропотливый. Но математика щедрА:
Полную и свежую версию этой книги в pdf-формате ,
а также курсы по другим темам можно найти после Оглавления.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
3.2.6. Среднее квадратическое отклонение
Или среднеквадратическое отклонение. Или стандартное отклонение. Это синонимы. Оно обозначается греческой буквой «сигма», и коль скоро у нас выборочная совокупность, то добавляем соответствующий подстрочный индекс:
– выборочное среднее квадратическое отклонение.
Чем меньше стандартное отклонение (и дисперсия), тем меньше вариация – тем бОльшее количество вариант находится вблизи выборочной средней. Но у нас, как нетрудно «прикинуть на глазок», разброс довольно-таки велик – значительное количество вкладов расположено далековато от среднего значения , и поэтому стандартное отклонение получилось немалым.
Следующая часть задачи состоит в том, чтобы корректно оценить генеральную дисперсию и генеральное среднее квадратическое отклонение .
Не так давно я рассказал о том, что выборочная дисперсия представляет собой смещённую оценку генеральной дисперсии. Это означает, что если мы будем проводить неоднократные выборки из той же генеральной совокупности, то полученные значения будут систематически занижено оценивать . Обращаю ваше внимание, что это не значит, что будет всегда меньше, чем .
И поэтому выборочную дисперсию, как намекает условие, нужно поправить:
– исправленная выборочная дисперсия
или 240,30 денежных единиц – исправленное среднее квадратическое отклонение.
и – это уже несмещённые оценки генеральной дисперсии и генерального стандартного отклонения соответственно.
Ввиду большого объёма выборки (100 вариант) этой поправкой можно пренебречь, но мы всё же не будем «разбрасываться» 30 «копейками».
Ответ: ; в качестве оценки соответствующих генеральных показателей принимаем и .
Рассмотренные выше показатели (размах вариации, среднее линейное отклонение, дисперсия, стандартное отклонение) входят в группу абсолютных показателей вариации, которые обладают рядом неудобств.
Так, если в прорешанной задаче не уменьшать варианты в 1000 раз, то дисперсия получится в миллион раз больше! Да-да, не , а . И возникает естественное желание привести результаты к некому единому стандарту.
Для этого существуют показатели относительные, и самый известный из них –
© mathprofi.ru — mathter.pro, 2010-2023, сделано в Блокноте.
Среднеквадратическое отклонение (Mean square deviation)
Среднеквадратическое отклонение — статистическая характеристика распределения случайной величины, показывающая среднюю степень разброса значений величины относительно математического ожидания. Обозначается греческой σ (сигма) или буквой S .
Среднеквадратическое отклонение измеряется в единицах самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.
Определяется как квадратный корень из дисперсии случайной величины. Стандартное отклонение на основании смещённой оценки дисперсии (иногда называемой просто выборочной дисперсией):
S = √ 1 n n ∑ i = 1 ( x i − ¯ x ) 2 .
Стандартное отклонение на основании несмещённой оценки дисперсии:
S 0 = √ n n − 1 S 2 = √ 1 n − 1 n ∑ i = 1 ( x i − ¯ x ) 2 ,
где S 2 — выборочная дисперсия; x i — i-й элемент выборки; n — объём выборки; ¯ x — среднее арифметическое выборки (выборочное среднее):
¯ x = 1 n n ∑ i = 1 x i = 1 n ( x 1 + … + x n ) .
Большее значение среднеквадратического отклонения показывает больший разброс наблюдаемых значений признака относительно среднего; меньшее значение, соответственно, показывает, что величины в множестве сгруппированы вокруг среднего.
Наряду с дисперсией среднеквадратическое отклонение является одним из параметров нормального распределения. Чем оно выше, тем длиннее «хвосты» распределения.
В анализе данных среднеквадратическое отклонение может использоваться в качестве меры изменчивости значений признаков, степени отклонения желаемых показателей от наблюдаемых, а также для обнаружения выбросов и аномальных значений в данных c помощью правила трёх сигм.
Среднеквадратическое отклонение
Среднеквадрати́ческое отклоне́ние (синонимы: среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние; близкие термины: станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания.
Основные сведения
Измеряется в единицах измерения самой случайной величины. Равно корню квадратному из дисперсии случайной величины. Среднеквадратическое отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.
Среднеквадратическое отклонение: